
Remaining Contemplation Questions 

Process Synchronisation 

1. The first known correct software solution to the critical-section problem for two processes was 

developed by Dekker. The two processes, P0 and P1, share the following variables: 

boolean flag[2];/*initiallyfalse*/ 

int turn; 

The structure of process Pi (i ==0or1) is shown in the figure below; the other process is Pj (j 

==1or0). Prove that the algorithm satisfies all three requirements for the critical-section 

problem. 

 

 

This algorithm satisfies the three conditions: (1) Mutual exclusion is ensured through the use of 

the flag and turn variables. If both processes set their flag to true, only one will succeed, 

namely, the process whose turn it is. The waiting process can only enter its critical section when 

the other process updates the value of turn. (2) Progress is provided, again through the flag and 

turn variables. This algorithm does not provide strict alternation. Rather, if a process wishes to 

access their critical section, it can set their flag variable to true and enter their critical section. It 

sets turn to the value of the other process only upon exiting its critical section. If this process 

wishes to enter its critical section again – before the other process – it repeats the process of 

entering its critical section and setting turn to the other process upon exiting. (3)Bounded 

waiting is preserved through the use of the turn variable. Assume two processes wish to enter 

their respective critical sections. They both set their value of flag to true; however, only the 

thread whose turn it is can proceed; the other thread waits. If bounded waiting were not 

preserve, it would therefore be possible that the waiting process would have to wait indefinitely 

while the first process repeatedly entered – and exited – its critical section. However, Dekker’s 

algorithm has a process set the value of turn to the other process, thereby ensuring that the 

other process will enter its critical section next. 

 



2. The first known correct software solution to the critical-section problem for n processes with a 

lower bound on waiting of n − 1 turns was presented by Eisenberg and McGuire. The processes 

share the following variables: 

enum pstate {idle, want in, in cs}; 

pstate flag[n]; 

int turn; 

All the elements of flag are initially idle; the initial value of turn is immaterial (between 0 and n-

1). The structure of process Pi is shown in the figure below. Prove that the algorithm satisfies all 

three requirements for the critical-section problem. 

 
 

This algorithm satisfies the three conditions. Before we show that the three conditions are 

satisfied, we give a brief explanation of what the algorithm does to ensure mutual exclusion. 

When a process i requires access to critical section, it first set sits flag variable to want in to 

indicate its desire. It then performs the following steps: (1) It ensures that all processes whose 

index lies between turn and i are idle. (2) If so, it updates its flag to in_cs and checks whether 

there is already some other process that has updated its flag to in_cs. (3) If not and if it is this 

process’s turn to enter the critical section or if the process indicated by the turn variable is idle, 

it enters the critical section. Given the above description, we can reason about how the 

algorithm satisfies the requirements in the following manner: 

Mutual exclusion is ensured: Notice that a process enters the critical section only if the following 

requirements are satisfied: no other process has its flag variable set to in_cs. Since the process 



sets its own flag variable set to in_cs before checking the status of other processes, we are 

guaranteed that no two processes will enter the critical section simultaneously. 

Progress requirement is satisfied: Consider the situation where multiple processes 

simultaneously set their flag variables to in_cs and then check whether there is any other 

process has the flag variable set to in_cs. When this happens, all processes realize that there are 

competing processes, enter the next iteration of the outer while(1) loop and reset their flag 

variables to want_in. Now the only process that will set its turn variable to in_cs is the process 

whose index is closest to turn. It is however possible that new processes whose index values are 

even closer to turn might decide to enter the critical section at this point and therefore might be 

able to simultaneously set its flag to in_cs. These processes would then realize there are 

competing processes and might restart the process of entering the critical section. However, at 

each iteration, the index values of processes that set their flag variables to in_cs become closer 

to turn and eventually we reach the following condition: only one process (say k) sets its flag to 

in_cs and no other process whose index lies between turn and k has set its flag to in_cs. This 

process then gets to enter the critical section. 

Bounded-waiting requirement is met: The bounded waiting requirement is satisfied by the fact 

that when a process k desires to enter the critical section, its flag is no longer set to idle. 

Therefore, any process whose index does not lie between turn and k cannot enter the critical 

section. In the meantime, all processes whose index falls between turn and k and desire to enter 

the critical section would indeed enter the critical section (due to the fact that the system always 

makes progress) and the turn value monotonically becomes closer to k. Eventually, either turn 

becomes k or there are no processes whose index values lie between turn and k, and therefore 

process k gets to enter the critical section. 

 

3. Discuss the tradeoff between fairness and throughput of operations in the readers-writers 

problem. Propose a method for solving the readers-writers problem without causing starvation. 

 

Throughput in the readers-writers problem is increased by favouring multiple readers as 

opposed to allowing a single writer to exclusively access the shared values. On the other hand, 

favouring readers could result in starvation for writers. The starvation in the readers-writers 

problem could be avoided by keeping timestamps associated with waiting processes. When a 

writer is finished with its task, it would wakeup the process that has been waiting for the longest 

duration. When a reader arrives and notices that another reader is accessing the database, then 

it would enter the critical section only if there are no waiting writers. These restrictions would 

guarantee fairness. 

 

4. How does the signal() operation associated with monitors differ from the corresponding 

operation defined for semaphores? 

 

The signal() operation associated with monitors is not persistent in the following sense: if a 

signal is performed and if there are no waiting threads, then the signal is simply ignored and the 

system does not remember that the signal took place. If a subsequent wait operation is 

performed, then the corresponding thread simply blocks. In semaphores, on the other hand, 

every signal results in a corresponding increment of the semaphore value even if there are no 



waiting threads future wait operation would immediately succeed because of the earlier 

increment. 

 

5. What is the meaning of the term busy waiting? What other kinds of waiting are there in an 

operating system? Can busy waiting be avoided altogether? Explain your answer. 

 

Busy waiting means that a process is waiting for a condition to be satisfied in a tight loop 

without relinquishing the processor. Alternatively, a process could wait by relinquishing the 

processor, and block on a condition and wait to be awakened at some appropriate time in the 

future. Busy waiting can be avoided but incurs the overhead associated with putting a process to 

sleep and having to wake it up when the appropriate program state is reached. 

 

6. Explain why implementing synchronization primitives by disabling interrupts is not appropriate 

in a single-processor system if the synchronization primitives are to be used in user level 

programs. 

 

If a user-level program is given the ability to disable interrupts, then it can disable the timer 

interrupt and prevent context switching from taking place, thereby allowing it to use the 

processor without letting other processes execute. 

 

7. Explain why interrupts are not appropriate for implementing synchronization primitives in 

multiprocessor systems. 

 

Interrupts are not sufficient in multiprocessor systems since disabling interrupts only prevents 

other processes from executing on the processor in which interrupts were disabled; there are no 

limitations on what processes could be executing on other processors and therefore the process 

disabling interrupts cannot guarantee mutually exclusive access to program state. 

 

8. Demonstrate that monitors and semaphores are equivalent in so far as they can be used to 

implement the same types of synchronization problems. 

 

A semaphore can be implemented using the following monitor code: 

 
A monitor could be implemented using a semaphore in the following manner. Each condition 

variable is represented by a queue of threads waiting for the condition. Each thread has a 



semaphore associated with its queue entry. When a thread performs await operation, it creates 

a new semaphore (initialized to zero), appends the semaphore to the queue associated with the 

condition variable, and performs a blocking semaphore decrement operation on the newly 

created semaphore. When a thread performs a signal on a condition variable, the first process in 

the queue is awakened by performing an increment on the corresponding semaphore. 

 

9. Show that, if the acquire() and release() semaphore operations are not executed atomically, 

then mutual exclusion may be violated. 

 

An acquire operation atomically decrements the value associated with a semaphore. If two 

acquire operations are executed on a semaphore when its value is 1, if the two operations are 

not performed atomically, then it is possible that both operations might proceed to decrement 

the semaphore value, thereby violating mutual exclusion. 

 

10. Suppose we replace the wait() and signal() operations of monitors with a single construct 

await(B), where B is a general Boolean expression that causes the process executing it to wait 

until B becomes true. 

a. Write a monitor using this scheme to implement the readers–writers problem. 

b. Explain why, in general, this construct cannot be implemented efficiently. 

c. What restrictions need to be put on the await statement so that it can be implemented 

efficiently? (Hint: Restrict the generality of B; see Kessels[1977].) 

 

a. The readers–writers problem could be modified with the following more general await 

statements: A reader can perform “await(active_writers==0 && waiting_writers==0)” to 

check that there are no active writers and there are no waiting writers before it enters 

the critical section. The writer can perform a “await(active_writers==0 && 

active_readers==0)” check to ensure mutually exclusive access. 

b. The system would have to check which one of the waiting threads have to be awakened 

by checking which one of their waiting conditions are satisfied after a signal. This 

requires considerable complexity and might require some interaction with the compiler 

to evaluate the conditions at different points in time.  

c. One could restrict the Boolean condition to be a disjunction of conjunctions with each 

component being a simple check (equality or inequality with respect to a static value) on 

a program variable. In that case, the Boolean condition could be communicated to the 

run-time system, which could perform the check every time it needs to determine which 

thread to be awakened. 

 

Deadlocks 

1. Consider the following snapshot of a system: 

Allocation Max  Available 

A B C D  A B C D  A B C D 



P0  0 0 1 2  0 0 1 2  1 5 2 0 

P1 1 0 0 0  1 7 5 0 

P2 1 3 5 4  2 3 5 6 

P3 0 6 3 2  0 6 5 2 

P4 0 0 1 4  0 6 5 6 

Answer the following questions using the banker’s algorithm: 

a) What is the content of the matrix Need? 

b) Is the system in a safe state? 

c) If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately? 

 

What is the content of the matrix Need? The values of Need for processes P0 through P4 

respectively are (0,0,0,0), (0,7,5,0), (1,0,0,2), (0,0,2,0), and (0,6,4,2). 

Is the system in a safe state? Yes. With Available being equal to (1,5,2,0), either process P0 or P3 

could run. Once process P3 runs, it releases its resources, which allow all other existing 

processes to run. 

If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately? Yes, it 

can. This results in the value of Available being (1,1,0,0). One ordering of processes that can 

finish is P0, P2, P3, P1, and P4. 

 

2. Consider a system consisting of four resources of the same type that are shared by three 

processes, each of which needs at most two resources. Show that the system is deadlock-free. 

 

Suppose the system is deadlocked. This implies that each process is holding one resource and is 

waiting for one more (hold and wait). Since there are three processes and four resources, one 

process must be able to obtain two resources. This process requires no more resources and, 

therefore it will return its resources when done. 

 

3. Consider a system consisting of m resources of the same type, being shared by n processes. 

Resources can be requested and released by processes only one at a time. Show that the system 

is deadlock free if the following two conditions hold: 

 The maximum need of each process is between 1 and m resources 

 The sum of all maximum needs is less than m + n 

 

Using the terminology of Section7.6.2, we have: 



 

 

4. Compare the circular-wait scheme with the deadlock-avoidance schemes (like the banker’s 

algorithm) with respect to the following issues: 

 Runtime overheads 

 System throughput 

 

A deadlock-avoidance scheme tends to increase the runtime overheads due to the cost of keep 

track of the current resource allocation. However, a deadlock-avoidance scheme allows for more 

concurrent use of resources than schemes that statically prevent the formation of deadlock. In 

that sense, a deadlock-avoidance scheme could increase system throughput. 

 

CPU Scheduling 

1. Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume that the I/O-

bound tasks issue an I/O operation once for every millisecond of CPU computing and that each 

I/O operation takes 10 milliseconds to complete. Also assume that the context switching 

overhead is 0.1millisecond and that all processes are long-running tasks. What is the CPU 

utilization for a round-robin scheduler when: 

 The time quantum is 1 millisecond 

 The time quantum is 10 milliseconds 

 

The time quantum is 1 millisecond: Irrespective of which process is scheduled, the scheduler 

incurs a 0.1 millisecond context-switching cost for every context-switch. This results in a CPU 

utilization of 1/1.1*100=91%. 

The time quantum is 10 milliseconds: The I/O-bound tasks incur a context switch after using up 

only 1 millisecond of the time quantum. The time required to cycle through all the processes is 

therefore 10*1.1+10.1 (as each I/O-bound task executes for 1 millisecond and then incurs the 

context switch, whereas the CPU-bound task executes for 10 milliseconds before incurring a 

context switch). The CPU utilization is therefore 20/21.1*100 = 94%. 



 

2. Consider a pre-emptive priority scheduling algorithm based on dynamically changing priorities. 

Larger priority numbers imply higher priority. When a process is waiting for the CPU (in the 

ready queue, but not running), its priority changes at a rate w; when it is running, its priority 

changes at a rate r. All processes are given a priority of 0 when they enter the ready queue. The 

parameters w and r can be set to give many different scheduling algorithms. 

 What is the algorithm that results from r >  w > 0? 

 What is the algorithm that results from w < r < 0? 

 

FCFS 

LIFO 

 

3. The traditional UNIX scheduler enforces an inverse relationship between priority numbers and 

priorities: The higher the number, the lower the priority. The scheduler recalculates process 

priorities once per second using the following function: 

  Priority = (recent CPU usage / 2) + base 

where base = 60 and recent CPU usage refers to a value indicating how often a process has used 

the CPU since priorities were last recalculated. Assume that recent CPU usage for process P1 is 

40, process P2 is 18, and process P3 is 10. What will be the new priorities for these three 

processes when priorities are recalculated? Based on this information, does the traditional UNIX 

scheduler raise or lower the relative priority of a CPU-bound process?  

 

The priorities assigned to the processes are 80, 69, and 65 respectively. The scheduler lowers the 

relative priority of CPU-bound processes. 


